###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Determining Slopes from Equations, Graphs, and Tables

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the slope of the relationship from each of the representations.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.

###
Biological Systems: Homeostasis

Identify and describe internal feedback mechanisms involved in maintaining homeostasis given scenarios, illustrations, or descriptions.

###
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.

###
Organisms' Adaptations

Given scenarios, illustrations. or descriptions, the student will compare variations and adaptations of organisms in different ecosystems.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Cell Homeostasis: Osmosis

The focus of this resource is cell homeostasis and, more specifically, osmosis. Students investigate the concept through a virtual lab, recording and analyzing data, creating sketches to represent vocabulary, and discovering the role of aquaporins in water transport through the cell membrane.

###
Cell Comparisons

Learners compare a variety of prokaryotes and eukaryotes to determine similarities and differences among and between them.

###
Equipment for Biology

Given investigation scenarios, students will determine the equipment that best fits the procedure.

###
Disruptions of the Cell Cycle: Cancer

Given illustrations or descriptions, students will identify disruptions of the cell cycle that lead to diseases such as cancer.

###
Mechanisms of Genetics: DNA Changes

Given illustrations or partial DNA sequences, students will identify changes in DNA and the significance of these changes.